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Abstract
Fox  squirrels  have  an  impressive  ability  to  remember  the 
location of stored food. In doing so, they combine information 
from  landmarks  of  different  types.  We  define  a  Bayesian 
model that indicates how an ideal observer would optimally
integrate landmark cues, and fit  this model to the decisions 
made  by  squirrels  in  a  spatial  memory  task.  The  resulting 
model  provides  a  unifying  framework  for  characterizing 
different  strategies  to  cue  integration,  and  a  tool  for 
investigating the circumstances under which particular cues 
are  used.  We  show  that  the  best  fitting  models  changed 
depending on the season at testing and the details of the task.
These analyses  support previous claims that squirrels adopt 
flexible strategies in landmark use.
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Introduction
Animals of many kinds display remarkable skill  at spatial 
navigation,  and  formal  models  of  how  animals  navigate 
have many potential uses. For example, one can use them to 
develop robots capable of autonomous movement  (Thrun, 
2005) and  to  aid  in  designing  new  animal  conservation 
principles  (Fevre,  Bronsvoort,  Hamilton  &  Cleaveland, 
2006; Simons, 2004). In this paper, we analyze the problem 
of identifying a spatial location from memory as a kind of 
Bayesian  inference.  This  approach  provides  a  way  to 
quantify degrees of belief and uncertainty, and thus provides 
a natural framework in which to develop an “ideal observer” 
model. In cases where multiple kinds of landmark cues are 
available,  the  Bayesian  approach  allows  us  to  take  into 
account  the  perceived  reliabilities  of  each  landmark  or 
landmark type. This information can be used to identify the 
location  most  consistent  with  the  animal’s  memory. 
Formalizing spatial memory in these terms gives us a tool 
for  identifying  which  types  of  landmarks  animals  use  in 
navigation,  what  factors  influence  the  use  of  these 
landmarks, and what kinds of strategies animals are using 
based on how they use those landmarks in combination.

Due to natural selection pressures, birds and other animals 
that  are either  nectar-feeding or store food have excellent 

spatial  memory  abilities,  and  have  often  been  used  in 
experiments.  Traditionally,  such  animals  have  been 
described as using landmarks in a hierarchical  fashion by 
which  the  animal  works  its  way  down  its  preference 
hierarchy  of  landmark  types  until  it  finds  the  rewarded 
location  (Brodbeck,  1994;  Clayton  & Krebs,  1994;  Herz, 
Zanette & Sherry 1994). Other non-human animals, such as 
bats,  hummingbirds,  and  squirrels  have  shown  similar 
preference  hierarchies  (Healy  &  Hurly,  1998;  Jacobs  & 
Shiflett, 1999; Thiele & Winter, 2005; Vlasak, 2006a). 

This  traditional  hierarchical  model  has  recently  been 
challenged by converging evidence in favor of the plasticity 
of  landmark  use  in  both  mammals  and  birds  (Pigeons: 
Legge,  Spetch & Batty,  2009; Chickadees: LaDage, Roth, 
Fox & Pravosudov,  2009;  Flying  Squirrel:  Gibbs,  Lea  & 
Jacobs, 2007; Fox Squirrel: Waisman & Jacobs, 2008). We 
were  interested  in  exploring in  more  detail  how different 
combinations of landmark types trade off in guiding search 
behavior  and  whether  animals  might  be  using  Bayesian 
inference  to  determine  their  search  strategy.  This  would 
explain the flexibility in their search strategies, and predict 
their strategies in a wide range of novel situations.

The plan of the paper is as follows. In the first section, we 
briefly explain the general structure of a Bayesian model of 
landmark use. In the second section, we describe a series of 
cue combination experiments with squirrels and the specific 
model  that  we used to  characterize  their  behavior.  In  the 
third section, we demonstrate how the model can be used to 
examine factors  that  influence  the use  of  landmarks.  The 
final section concludes the paper.

A Bayesian analysis of cue combination in 
squirrel spatial navigation

To construct a Bayesian model of squirrel spatial navigation 
we  must  first  define  the  problem  of  squirrel  spatial 
navigation  in  Bayesian  terms.  For  simplicity,  the  model 
presented  here  will  focus  on  the  navigation  problem 
encountered by a single species – the fox squirrel. A squirrel 
must rely on environmental  landmarks and its memory of 
those  landmarks  when  searching  for  food.  Environments 



change and a squirrel’s memory has finite precision. This 
leads to a navigational problem for which the ideal solution 
requires  accounting  for  these  sources  of  error  by 
determining  the  probability  that  the  food  is  hidden  in  a 
particular location. To do this, the squirrel must consider the 
variability of landmarks including global landmarks,  local 
landmarks,  and  the  perceptual  features  of  candidate 
locations.  More  formally,  we imagine  that  the  squirrel  is 
choosing  between  a  discrete  set  of  locations  L,  trying  to 
identify the location l∈L that matches a remembered set of 
cues m. Locations have a history of being used for storage, 
with p  l  being the probability of each location being used. 
The  squirrel  seeks  to  compute p  l∣m  ,  the  posterior 
probability of each location given the information provided 
by the memory  m.  This  can be done by applying Bayes’ 
rule, 

p  l∣m = p m∣l  p  l 
∑l ∈L p m∣l  p  l  (1)

where  p m∣l   is  the  probability  of  the  remembered 
landmarks  m given that  l was the true location. In order to 
simplify the problem, we will  restrict  our attention to the 
case where the types of cues that comprise the memory  m 
and their associated sources of uncertainty are independent, 
and no location is more likely a priori. In this case, Equation 
1 becomes

p  l∣m =
∏k p m k∣l 

∑l ∈L∏k p mk∣l  (2)

where k indexes specific types landmarks and mk is the part 
of the memory corresponding to type k.

The  distribution  of mk given  l –  the  probability  of 
recalling that landmark k takes its remembered value given 
that l is where the food is currently hidden – depends on that 
landmark’s  tendency  to  change  and  the  accuracy  and 
granularity of the squirrel’s memory. The case where each 
landmark  is  normally distributed  was  explored  in  Cheng, 
Shettleworth, Huttenlocher and Rieser (2007), where it was 
argued  that  pigeons  might  combine  such  landmarks 
optimally. The basic prediction produced by this account is 
that animals should rely on the perceived reliability of either 
individual landmarks or landmark categories. 

Existing  evidence  suggests  that  this  is  the  case.  For 
example, animals initially preferring one of two landmarks 
switched  their  preference  when  given  evidence  that  the 
second  landmark  was  more  reliable  (Biegler  &  Morris, 
1996). In terms of broader categories of landmarks, the most 
reliable  landmarks  are  considered  to  be  the  global 
landmarks, the far away, large landmarks that are not only 
the most immovable objects in the environment, but also the 
ones that are least distorted by changes in visual angle or 
across  seasonal  changes  to  the  local  environment 
(Shettleworth, 2003). This phenomenon is further supported 
by evidence that many species of animal prefer to use global 
landmarks  when  available.  However,  what  would 
distinguish the behavior of a Bayesian model from that of 
other models would be the optimal combination of available 

landmarks based on their reliabilities.  In the remainder of 
the  paper,  we  explore  whether  this  approach  can 
characterize the strategies  that  squirrels  use in identifying 
spatial locations from memory.

Applying the model to squirrel navigation
To  test  the  model  outlined  in  the  previous  section,  we 
analyzed  data  from a  series  of  experiments  in  which  fox 
squirrels  needed  to  identify  a  location  based  on  several 
different  cues,  taken  from  Waisman  and  Jacobs  (2008). 
These experiments manipulated the environment  in which 
squirrels were making decisions in order to produce conflict 
in  the  information  provided  by  different  cues,  and  thus 
provided a good test of our model.

Free-ranging fox  squirrels  were  initially trained to feed 
from a fixed location within a square array of four feeders 
(see Figure 1a). Identification of a location could be done 
using three types of landmarks. Extra-array (EX) landmarks 
were those that were external to the feeder array, including 
objects  such  as  large  trees  and  bushes.  Intra-array  (IN) 
landmarks  were  the  non-rewarded  feeders  in  the  array. 
Unique feature (UF) landmarks were defined as any features 
unique to the feeder, including scent and the color and shape 
of ceramic figurines that were placed on top of the boxes.

Squirrels were then tested in two transformed versions of 
the array. In hierarchy tests, all three landmark types were in 
conflict with one another, with no two cues being consistent 
in  the  location  they  identified  (see  Figure  1b).  In  the 
majority tests, one landmark type was in conflict with the 
other two landmark types (see Figure 1c). This provided a 
test  of  the  majority  strategy,  examining  whether  the 
squirrels  always  chose  the  location  consistent  with  the 
majority of the landmark types.

Experimental setup
Data taken from these experiments were originally analyzed 
using binomial  one-tailed  tests.  See  Waisman and Jacobs 
(2008) for  further  discussion of  the data.  In  summary,  in 
Experiment  1,  squirrels  chose  the  majority  location 
significantly greater than chance and chose the UF location 
in  the  hierarchy  test  (p <  0.05  for  all  tests).  Since  fox 
squirrels  are  known to prefer  EX landmarks  in  hierarchy 
tests, the choice of UF in this experiment was perplexing. 
The contrast suggested that the particular experimental setup 
had somehow increased the saliency of the UF landmarks. 
To further explore this possibility,  squirrels were tested at 
the same time the following year, summer, using a different 
experimental setup and found that, while squirrels continued 
to choose the majority location in all three majority tests, 
they now chose the EX location in the hierarchy test (p < 
0.05  for  all  tests).  From  this  pattern  of  data,  it  was 
concluded that the experimental setup had indeed increased 
the saliency of the UF landmarks.

To investigate possible seasonal effects on landmark use, 
the experiment was also run in the spring, using the second 
experimental setup, with less salient UF landmarks. In this 
experiment, squirrels no longer chose the majority location 



when it was the combination of IN and UF landmarks, and 
chose the EX location in the hierarchy test (p < 0.05). The 
spring data suggest that squirrels were no longer taking into 
account  UF  landmarks  when  making  spatial  decisions. 
Taken altogether, the data are consistent with the proposal 
that squirrels are using a majority strategy when possible, 
but that there are both seasonal and salience effects on the 
use of UF landmarks. The results suggested that rather than 
being limited to a strict hierarchy, as has been proposed in 
earlier  studies,  squirrels  used  a  majority  strategy  when 
possible.

Applying the model to the experiment
The  Bayesian  model  introduced  in  the  previous  section 
gives us a sophisticated tool for characterizing the strategies 
that  squirrels  used  in  these  experiments.  Again,  the 
squirrel’s  problem is to determine which location has  the 
highest  posterior  probability  of  being  correct  given  its 
memory of the location. We will use  l to denote candidate 
locations and their associated cues. These cues include all 
three  types  of  landmarks:  extra-array,  array  position,  and 
unique features.  The squirrel’s  memory of the location  m 
contains  recalled  values  for  extra-array m EX  ,  intra-array
m I N  ,  and feature  mUF  cues.  The squirrels were naive 

and had no information besides  the cues  leading them to 
prefer  one  particular  location  over  another,  and  local 
landmark  and  feature  cues  were  novel  and  independently 
varying,  so  our  earlier  formulation  (Equation  2)  applies, 
yielding

p  l∣m ∝ p mEX∣l  p mI N line l  p mUF∣l  (3)
Our  model  is  thus  defined  by  specifying  the  likelihood 
terms for each of these cues.

We adopted  a  slightly  different  probabilistic  model  for 
each cue type.  For global landmark cues,  EX, we assume 
that recalled locations are distributed normally around the 
true location, in accordance  with previous cue integration 
models: p mEX∣l =N mEX∣l ,2 I  , where we represent the 
cue  values  as  two-dimensional  vectors  and  I is  the  two-
dimensional  identity  matrix.  For  intra-array  cues,  IN,  we 
characterize the difference between a candidate true location 
and  the  recalled  location  as  a  perturbation  in  grid 
positioning  in  either  of  two  independent,  orthogonal 
directions. If we let the probability of a perturbation in each 
direction be I N , then p mI N∣l =1− I N 2− p I N

p , where  p 
is the number of perturbations out of a possible two. For 
feature-based  cues,  UF,  if  the  probability  that  a  feature 
differs between the hypothesized location and the squirrel’s 
memory  is  UF ,  so p mUF∣l =1−UF if  the  recalled  and 
candidate features are identical, else UF /3 given that there 
are three other locations with their own distinct features.

Under  this  specification,  the  three  parameters 2 ,I N ,
and  UF capture the reliability of each type of cue, and by 
extension  the  strength  of  the  evidence  that  that  cue  type 
provides and the likelihood that the squirrel will prefer that 
cue  when  all  three  are  in  conflict.  The  results  of  the 

experiment indicate the percentage of squirrels choosing a 
particular observed location, which can be used to estimate 
these  parameters  from  the  data.  We  compute  the  log-
likelihood of the choices made by the squirrels by assuming 
that they used a standard probability-matching decision rule, 
with the probability of choosing a location being equal to 
the posterior probability of that location. 

Model results for all experiments
We can use this Bayesian model as the basis for defining a 
nested hierarchy of  models  that  differ  in  the assumptions 
they make about the cues that fox squirrels use in choosing 
locations  (see  Figure  2).  The  simplest  model  sets  the 
parameters to values that make all cue values equally likely: 
2=1e9 ,  I N=0.5 and  UF=0.25 .  This  model 

corresponds to completely uniform choices of location. The 
fit between this model and the data is represented by its log 
likelihood value:  -257.92. We can then examine the effects 
of estimating the parameters associated with each cue. The 
model that  only optimized the UF parameter, UF ,  gave a 
similar log-likelihood of -257.68. Thus, the UF landmark on 
its  own  does  not  provide  a  significant  amount  of 
information  for  explaining  the  data.  In  contrast,  the  log 
likelihood  values  yielded  by  estimating  either  the  EX 
parameter 2 , or the IN parameter, I N , on their own were 
significantly different from that of the chance model (p < 
0.01 for both, by a likelihood-ratio test.).

As  one  can  see  in  Figure  2,  of  the  two  optimized 
parameter  models,  the model  that  optimized  both the  EX 
and IN parameters most closely fit with the raw data, with a 
log-likelihood of -160.11. However, most of this fit seems 
to be captured by the EX parameter, since the model with 
EX and UF parameters  also does well  at  fitting the data, 
with a log-likelihood of -172.48. Even so, the log-likelihood 
of  the  model  that  estimated  parameters  for  all  three  cue 
types was significantly better at predicting the data than any 
combination of only two parameters or one parameter on its 
own (p <  0.01  for all comparisons). This model estimated 
the values of the parameters to be  15.46  for 2 ,  0.30  for
I N and  0.60  for UF .  So while it  seems that EX has the 

greatest  influence  on  the  choices  of  the  squirrels,  their 
behavior is consistent with that of a model that uses all three 
landmark types.

Further uses of the Bayesian framework
In  this  section,  we  consider  how  these  results  relate  to 
squirrels’ choice of strategy, and how the model can be used 
to  explore  variation  in  the  importance  of  cues  due  to 
differences in salience and season.

The majority strategy and Bayes
In  the  study  from  which  we  took  our  data,  when  fox 
squirrels  were  presented  with  situations  in  which  each 
landmark  type  indicated  a  different  location,  they 
predominantly  relied  on  external,  global  landmarks. 
However,  when  presented  with  situations  in  which  two 



landmark  types  were  consistent  with  one  another  and  in 
conflict with the preferred, global landmarks, they chose to 
search in the location consistent with the greatest number of 
landmark types. Waisman and Jacobs (2008) called this the 
majority  strategy.  These  results  support  the  idea  that 
squirrels  are  able  to  adapt  their  search  strategy  to  the 
particular spatial context.

This  type  of  decision  strategy  can  be  modeled  using  a 
Bayesian  approach.  Under  the  same  distributional 
assumptions  as  before  and  a  maximizing  or  probability 
matching decision rule, the squirrel is most likely to visit the 
location for which p m∣l  is maximal. For this location l i , 
p mEX∣li  p mI N∣l i p mUF∣l i p mEX∣l j p m I N∣l j p mUF∣l j  

for all j≠i . Equivalently, we can represent this relationship 
in terms of the evidence provided by each feature, i.e., the 
log odds of the recalled cue values for location  i versus  j. 
For instance, the evidence provided by the intra-array cues 

is  e I N  i , j =log 
p mI N∣l i
p mI N∣l j 

 . For the majority strategy to 

apply,  no  cue  may  provide  evidence  dominating  the 
combined evidence from other two: the maximum possible 
evidence  for  one  cue  cannot  exceed  the  sum  of  the 
maximum negative evidence provided by the other two. We 
can  establish  some bounds  on 2 (in  terms  of  a  maximal 
distance  d between candidate and recalled  locations), I N

and UF that  determine  when  a  majority  strategy  will  no 
longer  apply:  violations  of 
max ea  i , j max eb  j ,i max e c  j , i  for  any 

combination of cues  a,  b,  and  c imply that  the Squirrel’s 
behavior can deviate from a majority strategy.

Determining  whether  a  set  of  parameters  is  consistent 
with the majority strategy requires computing the maximal 
evidence that can be provided by each kind of cue. In our 
model,  this  is 2 2−1

d 2 for  EX, log 1− I N
2 I N

−2  for  IN, 

and log 
1−UF

UF /3
 for  UF.  Plugging  these  values  into  the 

constraints identified in the previous paragraph, we obtain 
the following inequalities:

2 2−1
d 2log 1−I N 2 I N

−2 log 1−UF 3UF
−1 

log 1−I N 2I N
−2 2 2−1

d 2log 1−UF 3UF
−1 

log 1−UF 3UF
−1 log 1−I N 2 I N

−2 2 2−1
d 2

If these inequalities are satisfied, then our Bayesian model 
will produce behavior consistent with the majority strategy. 
The  parameter  estimates  computed  from  the  experiments 
summarized above did not meet  these criteria,  suggesting 
that  squirrels’  cue  combination  behavior  cannot  be 
explained by the use of a majority strategy.

Capturing variations in salience and season
We analyzed  the  possible  salience  and  season  effects  by 
repeating  the  analyses  from  the  previous  section  on  two 
different  subsets  of  the  data:  one  that  included  only 
experiments  run  in  the  spring,  and  another  excluding 
Experiment  1  in  which  the  experimental  setup  included 

stimuli  that  seemed  to  increase  the  saliency  of  UF 
landmarks. Figure 3 summarizes these analyses.

Seasonal effects
Using data from only the spring experiments (Figure 3a), 
the inclusion of UF  , while significantly better than having 
no parameters (p < 0.05), did little to enhance any model in 
which it  was included.  The inclusion of  both IN and EX 
parameters was, however, significantly better that including 
either  parameter  alone  (p <  0.01  for  both  comparisons). 
Unlike the model using the full data set, the log likelihoods 
of  both  the  model  that  included  only  the  IN  and  EX 
parameters  and  the  model  that  optimized  all  three 
parameters  were  identical,  with  a  value  of  -89.53.  The 
model  including the EX and IN parameters  estimated the 
parameters  to  be  14.46  for 2 and  0.30  for I N .  These 
results  suggests  that  the  squirrels  were  not  taking  UF 
landmarks  into account  when making spatial  decisions  at 
this time, as concluded in Waisman and Jacobs (2008). 

Salience effects
In the analyses that excluded Experiment 1 (Figure 3b), the 
log likelihood of the model that optimized the IN and EX 
parameters  was  once  again  near  identical  to  that  of  the 
model  that  included  all  three  parameters,  with  values  of 
-121.8 and -120.7 respectively. The model that included the 
IN and EX parameters estimated the parameters to be  14.5 
for 2 and  0.26  for I N .  Since, once again, the model that 
best matched the squirrels’ behavior was the one that did not 
optimize the parameter for the UF landmark, these analyses 
support  the  idea  that  they  were  less  salient  in  the 
experimental setup.

Summary and Conclusion
Taken together, the results of these analyses illustrate how 
our  Bayesian  framework  can  be  used  to  characterize  the 
cues used by animals in navigation. Across all data sets that 
we  ran,  the  extra-  array  parameter, 2 ,  resulted  in  a 
statistically significant improvement in fit whenever it was 
added to a model (p < 0.01 for all comparisons). This agrees 
with previous research stating that for squirrels in the field 
the global landmarks are the most salient when navigating 
(Jacobs & Shiflett, 1999; Vlasak, 2006a, b). The fact that for 
both the spring data set and the data set excluding the first 
experiment, optimizing the parameter for the unique feature 
landmarks, UF , yielded no predictive power beyond that of 
the other landmark types,  corroborates the conclusion that 
UF landmarks were less salient to the squirrels both in the 
spring and when using the second experimental setup. From 
these analyses we can conclude that a Bayesian model is a 
useful tool for exploring the spatial strategies. The pattern of 
choices exhibited by the squirrels matched that of a rational 
model  taking  into  account  all  three  available  landmark 
types. Additionally, model comparisons provided a tool for 
investigating both seasonal and salience effects in the data.



Figures

Figure 1: A picture of a squirrel participant and the experimental setup. (a) A training trial in which feeder D is rewarded. (b) 
Hierarchy test: the entire array is moved horizontally and feeder D is switched with feeder A. Unique feature (UF) cues 
indicate search at D, intra-array (IN) landmarks indicate search at A, and extra-array (EX) landmarks indicate search at C. (c) 
Majority tests based on having been trained to feeder D.

Figure 2: Predictions of each model in the nested hierarchy analysis, labeled with which parameters were estimated and the 
test type. 1 was the hierarchy test, 2, 3, and 4 represent the majority tests. Each quadrant represents the posterior probability 
of an observed location, corresponding to the four locations shown in Figure 1. Darker indicates higher probability, while 
lighter indicates lower probability.



Figure 3: Model predictions for the seasonal and salience analyses. Format is the same as Experiment 1. (a) are the analyses 
using the subset of the data that were collected only in the spring, Experiments 2-4. (b) are the analyses using the subset of 
the data that were collected using the second experimental setup, Experiments 2-5.

Acknowledgments
We  would  like  to  thank  José  Lopez  and  Ted  Claire  for 
constructing the feeders.  The research was supported by a 
grant from the University Committee on Research and by a 
sabbatical appointment to L.J. at the Santa Fe Institute. The 
research followed federal and university animal care and use 
rules  and  guidelines  and  complied  with  APA  ethical 
standards in the treatment of animals.

References
Biegler,  R.,  &  Morris,  R.  (1996).  Landmark  stability: 

Studies exploring whether  the perceived  stability of the 
environment influences spatial representation.  Journal of  
Experimental Biology, 199(1), 187-193.

Brodbeck,  D.  R.  (1994).  Memory  for  Spatial  and  Local 
Cues  -  a  Comparison  of  a  Storing  and  a  Nonstoring 
Species. Animal Learning & Behavior, 22(2), 119-133.

Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. 
J.  (2007).  Bayesian  integration  of  spatial  information. 
Psychological Bulletin, 133(4), 625-637.

Clayton, N. S., & Krebs, J. R. (1994). Memory for Spatial 
and Object-Specific Cues in Food-Storing and Nonstoring 
Birds.  Journal  of  Comparative  Physiology  a-Sensory  
Neural and Behavioral Physiology, 174(3), 371-379.

Fevre,  E.  M.,  Bronsvoort,  B.,  Hamilton,  K.  A.,  & 
Cleaveland, S. (2006). Animal movements and the spread 
of  infectious  diseases.  Trends  in  Microbiology,  14(3), 
125-131.

Gibbs, S., Lea, S., & Jacobs, L. F. (2007). Flexible use of 
spatial  cues  in  the southern  flying  squirrel  (Glaucomys 
volans). Animal Cognition, 10(2), 203-209.

Healy, S. D., & Hurly, T. A. (1998). Rufous hummingbirds' 
(Selasphorus  rufus)  memory  for  flowers:  Patterns  or 
actual  spatial  locations?  Journal  of  Experimental  
Psychology-Animal Behavior Processes, 24(4), 396-404.

Herz,  R.  S.,  Zanette,  L.,  & Sherry,  D.  F.  (1994).  Spatial 
Cues for Cache Retrieval by Black-Capped Chickadees. 
Animal Behaviour, 48(2), 343-351.

Jacobs, L. F., & Shiflett, M. W. (1999). Spatial orientation 
on a vertical maze in free-ranging fox squirrels (Sciurus  
niger). Journal of Comparative Psychology, 113(2), 116-
127.

LaDage, L. D., Roth, T. C., Fox, R. A., & Pravosudov, V. 
V. (2009). Flexible cue use in food-caching birds. Animal 
Cognition, 12(3), 419-426.

Legge,  E.  L.  G.,  Spetch,  M.  L.,  &  Batty,  E.  R.  (2009). 
Pigeons'  (Columba  livia)  hierarchical  organization  of 
local and global cues in touch screen tasks.  Behavioural  
Processes, 80(2), 128-139.

Shettleworth,  S.  J.  (2003).  Memory  and  hippocampal 
specialization  in  food-storing  birds:  Challenges  for 
research on comparative cognition.  Brain Behavior and 
Evolution, 62(2), 108-116.

Simons,  A.  M.  (2004).  Many  wrongs:  the  advantage  of 
group navigation.  Trends in Ecology & Evolution, 19(9), 
453-455.

Thiele,  J.,  & Winter,  Y.  (2005).  Hierarchical  strategy for 
relocating  food  targets  in  flower  bats:  spatial  memory 
versus  cue-directed  search.  Animal  Behaviour,  69,  315-
327.

Thrun, S., (2005). Probabilistic robotics / Sebastian Thrun,  
Wolfram Burgard, Dieter Fox. Cambridge, Mass. :: MIT 
Press.

Vlasak, A. N. (2006a). Global and local spatial landmarks: 
their role during foraging by Columbian ground squirrels 
(Spermophilus columbianus). Animal Cognition, 9(1), 71-
80.

Vlasak,  A.  N.  (2006b).  The relative importance  of  global 
and local landmarks in navigation by Columbian ground 
squirrels  (Spermophilus  columbianus).  Journal  of  
Comparative Psychology, 120(2), 131-138.

Waisman, A. S., & Jacobs, L. F. (2008). Flexibility of cue 
use in the fox squirrel (Sciurus niger). Animal Cognition,  
11(4), 625-636.


	Introduction
	A Bayesian analysis of cue combination in squirrel spatial navigation
	Applying the model to squirrel navigation
	Experimental setup
	Applying the model to the experiment
	Model results for all experiments

	Further uses of the Bayesian framework
	The majority strategy and Bayes
	Capturing variations in salience and season

	Summary and Conclusion
	Figures

	Acknowledgments
	References

