SPATIAL MOVEMENT
Animals weigh the risks of predation, time, and energy while moving through unpredictable and dynamic substrates. Biomechanics studies locomotion as it varies with the environment. Spatial cognition is used to learn, adapt, and execute routes in complex environments. Both fields study animal movement, yet the two fields have not been integrated. Biomechanical studies focus on the physics of movement, but do not address the impact of learning on biomechanical solutions, such as choosing a simpler or more complex route. Similarly, spatial cognition does not consider the biomechanical costs of route optimization. To understand these decisions, we need to integrate these concepts into the term we coined, cognitive biomechanics.
This include strategies of embodied cognition: how dogs adjust their movements to changing weather as they track a human trail; how humans track locations using odor and why the scale of space can dictate the complexity of a spatial orientation strategy.
Key Papers
Hunt NH, Jinn J, Jacobs LF, Full RJ (2021) Acrobatic squirrels learn to leap and land on tree branches without falling. Science 373:697–700. https://doi.org/10.1126/science.abe5753 PDF
Jinn J, Connor EG, Jacobs LF (2020) How ambient environment influences olfactory orientation in search and rescue dogs. Chem Senses 45:625–634. https://doi.org/10.1093/chemse/bjaa060. PDF
Jacobs LF, Arter J, Cook A, Sulloway FJ (2015) Olfactory orientation and navigation in humans. PLoS ONE 10:e0129387. https://doi.org/10.1371/journal.pone.0129387.s001 PDF
Jacobs LF, Menzel R (2014) Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology 2:1–22. https://doi.org/10.1186/2051-3933-2-3 PDF